Details of Shrouded Stator Hub Cavity Flow in a Multistage Axial Compressor Part 2: Leakage Flow Characteristics in Stator Wells

Author:

Kamdar Nitya1,Lou Fangyuan1,Key Nicole L.1

Affiliation:

1. Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

Abstract The flow in shrouded stator cavities can be quite complex with axial, radial, and circumferential variations. As the leakage flow recirculates and is re-injected into the main flow path upstream of the stator, it deteriorates the near-hub flow field and, thus, degrades the overall aerodynamic performance of the compressor. In addition, the windage heating in the cavity can raise thermal-mechanical concerns. Fully understanding the details of the shrouded-hub cavity flow in a multistage environment can enable better hub cavity designs. In the first part of the paper, the influence of the hub leakage flow on compressor performance and its interactions with the primary flow were investigated. While the impact of hub leakage flow on the primary passage is readily available in the open literature, details inside the cavity geometry are scarce due to the difficulties in instrumenting that region for an experiment or modeling the full cavity geometry. To shed light on this topic, the flow physics in the stator cavity inlet and outlet wells are investigated in this paper using a coupled computational fluid dynamics model with the inclusion of the stator cavity wells for the Purdue 3-stage (P3S) axial compressor, which is representative of the rear stages of a high-pressure-compressor in core engines. At the inlet cavity, the presence of at least one pair of vortices influences the trajectory of the cavity leakage flow. The amount of leakage flow also determines the size of the vortical structures, with larger clearances creating a smaller vortex and vice versa. After passing through the labyrinth seals, the leakage flow travels along the stator landing first and then transitions to the rotor drum. In general, a flow path closer to the rotor drum achieves higher circumferential velocity but also exhibits significant temperature rise. A rise in circumferential velocity directly corresponds to a rise in temperature. In addition, the windage heating increases with increasing seal clearance. Furthermore, the inlet well contributes the most to overall windage, nearly 50% of the total windage heating, while the labyrinth seals and outlet well account for very little.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference15 articles.

1. Some Shrouding and Tip Clearance Effects in Axial Flow Compressors;Int. Ship Build. Prog.,1958

2. Details of Shrouded Stator Hub Cavity Flow in a Multi-Stage Axial Compressor Part 1: Interactions With the Primary Flow

3. The Aerodynamic Interaction of Stator Shroud Leakage and Mainstream Flows in Compressors,2000

4. Details of Axial-Compressor Shrouded Stator Cavity Flows,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3