A Junction-Orifice-Fiber Entrance Layer Model for Capillary Permeability: Application to Frog Mesenteric Capillaries

Author:

Fu B. M.1,Weinbaum S.1,Tsay R. Y.2,Curry F. E.3

Affiliation:

1. Department of Mechanical Engineering, The City College of the City University of New York, New York, NY 10031

2. Institute of Biomedical Engineering, National Yang-Ming Medical College, Taipei, Taiwan, R.O.C. 11221

3. Department of Human Physiology, School of Medicine, University of California at Davis, Davis, CA 95616

Abstract

The recent serial section electron microscopic studies by Adamson and Michel (1993) on microves gels of frog mesentery have revealed that the large pores in the junction strand of the interendothelial cleft are widely separated 150 nm wide orifice-like breaks whose gap height 20 nm is the same as the wide part of the cleft. In this paper a modified version of the model in Weinbaum et al. (1992) is first developed in which this orifice structure is explored in combination with a random or ordered fiber matrix layer that is at the luminal surface and/or occupies a fraction of the wide part of the cleft. This basic orifice model predicts that for the measured Lp to be achieved the fiber layer must be confined to a relatively narrow region at the entrance to the cleft where it serves as the primary molecular filter. The model provides a much better fit of the permeability P for intermediate size solutes between 1 and 2 nm radius than the previous model in Weinbaum et al., where the junction strand breaks were treated as finite depth circular or rectangular pores, but like the previous model significantly underestimates P for small ions. However, it is shown that if a small frequent pore of 1.5 nm radius with characteristic spacing comparable to the diameter of the junction proteins or a continuous narrow slit of approximately 1.5 to 2.3 nm gap height is also present in the continuous part of the junction strand, small ion permeability can also be satisfied. The 1.5 nm radius pore does not significantly change Lp, whereas the continuous narrow slit provides a contribution to Lp that is comparable to, or in the case of the 2.3 nm slit greater than, the widely spaced 150 nm orifices. Thus, for the narrow slit the contribution to Lp from the orifices can be as low as 1.0×10−7 cm/s/cm H2O and it is also possible to satisfy the 2.5 fold increase in permeability that occurs when the matrix is enzymatically removed from the luminal side of the cleft, Adamson (1990). The likelihood of each of these cleft structures is discussed.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3