Affiliation:
1. Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India
2. Professor Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India e-mail:
Abstract
Inspired by fast model predictive control (MPC), a new nonlinear optimal command tracking technique is presented in this paper, which is named as “Tracking-oriented Model Predictive Static Programming (T-MPSP).” Like MPC, a model-based prediction-correction approach is adopted. However, the entire problem is converted to a very low-dimensional “static programming” problem from which the control history update is computed in closed-form. Moreover, the necessary sensitivity matrices (which are the backbone of the algorithm) are computed recursively. These two salient features make the computational process highly efficient, thereby making it suitable for implementation in real time. A trajectory tracking problem of a two-wheel differential drive mobile robot is presented to validate and demonstrate the proposed philosophy. The simulation studies are very close to realistic scenario by incorporating disturbance input, parameter uncertainty, feedback sensor noise, time delays, state constraints, and control constraints. The algorithm has been implemented on a real hardware and the experimental validation corroborates the simulation results.
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献