Nonvibrating Contact Potential Difference Probe Measurement of a Nanometer-Scale Lubricant on a Hard Disk

Author:

Yano D.1,Korach C.1,Streator J.1,Danyluk S.1

Affiliation:

1. The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405

Abstract

This paper reports on a feasibility study in the detection of nanometer thick lubricated regions on a hard disk by a novel use of a Kelvin probe. A nonvibrating Kelvin probe was constructed and used to measure the voltages between the copper surface of the probe and a hard disk partially-lubricated with a perfluoropolyether. The probe, constructed of a shielded 1.6 mm diameter gold-coated copper wire, was fixed above the hard disk and the probe voltage was obtained as a function of the speed of the disk and lubricant thickness. The probe generates an electrical signal as the interface between the lubricated and unlubricated regions is crossed. Results show that the probe can distinguish between regions on the hard disk that contain 3 and 10 nm thick lubricant films.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3