Affiliation:
1. Quinta Corporation, 1870 Lundy Avenue, San Jose, CA 95131-1826
Abstract
A partial contact air bearing model and Archard’s wear law are used to investigate the air bearing and wear characteristics of proximity recording sliders during a take-off process. The air bearing pitch torque, pitch and contact force are used to characterize the contact take-off process. In addition, the wear factor derived from the Archard’s wear law is employed to measure the take-off performance. The results indicate the existence of two distinct take-off stages: a period of rapidly increasing pitch preceding a relatively steady take-off event. The proper range of taper angle and step height, which produce a rapid initial pitch increase and steady subsequent take-off as well as less wear in the head/disk interface, are determined through simulation. While the simulation results demonstrate the negligible effect of crown height on the rate of the initial pitch increase, larger crown values are shown to yield higher pitch and smaller wear in the head/disk interface during the take-off process. In summary, the partial contact air bearing simulation and the wear factor calculation of the take-off process, developed in this study, offers a fast and accurate analytical tool to optimize ABS design for the fast take-off performance.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献