The Increasing Complexity of Hot Corrosion

Author:

Shifler David A.

Abstract

It has been conjectured that if sulfur in fuel is removed, engine materials will cease to experience attack from hot corrosion, since this sulfur has been viewed as the primary cause of hot corrosion and sulfidation. Historically, hot corrosion has been defined as an accelerated degradation process that generally involves deposition of corrosive species (e.g., sulfates) from the surrounding environment (e.g., combustion gas) onto the surface of hot components, resulting in destruction of the protective oxide scale. Most papers in the literature, since the 1970s, consider sodium sulfate salt as the single specie contributing to hot corrosion. Recent Navy standards for Navy F-76 and similar fuels have dropped the sulfur content down to 15 parts per million (ppm). Most observers believe that the removal of sulfur will end hot corrosion events in the Fleet. However, the deposit chemistry influencing hot corrosion is known to be much more complex consisting of multiple sulfates and silicates. Sulfur species may still enter the combustion chamber via ship's air intake, which may include seawater entrained in the air. In addition to sodium sulfate, seawater contains magnesium, calcium and potassium salts, and atmospheric contaminants that may contribute to hot corrosion. This paper will cover some of the revised understanding of hot corrosion and consider other possible contaminants that could further complicate a full understanding of hot corrosion.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3