Complexification-Averaging Analysis on a Giant Magnetostrictive Harvester Integrated With a Nonlinear Energy Sink

Author:

Fang Zhi-Wei1,Zhang Ye-Wei2,Li Xiang1,Ding Hu3,Chen Li-Qun45

Affiliation:

1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China e-mail:

2. Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China e-mail:

3. Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China e-mail:

4. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China;

5. Department of Mechanics, Shanghai University, Shanghai 200444, China e-mail:

Abstract

The present study aims to investigate the steady-state response regimes of a device comprising a nonlinear energy sink (NES) and a giant magnetostrictive energy harvester utilizing analytical approximation. The complexification-averaging (CX-A) technique is generalized to systems defined by differential algebraic equations (DAEs). The amplitude-frequency responses are compared with numerical simulations for validation purposes. The tensile and compressive stresses of giant magnetostrictive material (GMM) are checked to ensure that the material functions properly. The energy harvested is calculated and the comparison of transmissibility of the apparatus with and without NES–GMM is exhibited to reveal the performance of vibration mitigation. Then, the stability and bifurcations are examined. The outcome demonstrates that the steady-state periodic solutions of the system undergo saddle-node (SN) bifurcation at a certain set of parameters. In the meantime, no Hopf bifurcation is observed. The introduction of NES and GMM for vibration reduction and energy harvesting brings about geometric nonlinearity and material nonlinearity. By computing both the responses of the primary system equipped with the NES only and the NES–GMM, it is indicated that the added GMM can dramatically modify the steady-state dynamics. A further optimization with respect to the cubic stiffness, the damper of NES, and the amplitude of excitation is conducted, respectively. The boundary where the giant magnetostrictive energy harvester is out of work is pointed out as well during the process of optimizing.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province

Publisher

ASME International

Subject

General Engineering

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3