Synthesis of a Spatial RRSS Mechanism for Path Generation Using the Numerical Atlas Method

Author:

Liu Wenrui1,Sun Jianwei2,Chu Jinkui3

Affiliation:

1. School of Mechatronic Engineering, Changchun University of Technology, No. 2055, Yanan Road, Changchun City, Jilin Province 130012, China

2. School of Mechatronic Engineering, Changchun University of Technology, No. 2055, Yanan Road, Changchun City, Jilin Province 130012 China

3. School of Mechanical Engineering, Dalian University of Technology, No.2, Linggong Road, Ganjingzi District, Dalian City, Liaoning Province 116023, China

Abstract

Abstract An open path synthesis method for a spatial revolute-revolute-spherical-spherical (RRSS) mechanism is presented in this paper. The mathematical model for the trajectory curve is established. The characteristics of an RRSS mechanism in a standard installation position are revealed: the projection points of the coupler curve on the Oxy plane rotate by the corresponding input angles around the z-axis, and the generated points lie on an ellipse. Based on this finding, a 17-dimensional path generation problem can be translated into two lower-dimensional matching recognition problems and one actual size and installation position calculation problem. The path generation can be achieved by three steps. First, a database of four dimensional rotation angle parameters is established. By comparing the similarities between the mechanism feature curve of the prescribed open curve and its corresponding mechanism feature ellipse (MFE), the angles of installation, the initial angle of the input link, and the elliptic feature parameters of the desired RRSS mechanism can be approximately determined. Then, a 13-dimensional dynamic self-adapting numerical atlas database is established, which contains six basic dimensional types (BDTs) and seven wavelet feature parameters, and the BDTs of the desired RRSS mechanism are obtained. Finally, based on the relationship between the MFE of the prescribed curve and the BDTs of the desired RRSS mechanism, the calculation models for the actual link lengths and installation positions of the desired RRSS mechanism were established. Three examples are presented in this paper.

Funder

Jilin Scientific and Technological Development Program

National Natural Science Foundation of China

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dimensional synthesis of motion generation of a spatial RCCC mechanism;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2023-12-20

2. Dimensional synthesis of motion generation in a spherical four-bar mechanism;Transactions of the Canadian Society for Mechanical Engineering;2023-11-03

3. Dimensional synthesis of motion generation in a spherical four-bar mechanism;T CAN SOC MECH ENG;2023

4. Optimal synthesis of a spatial RRSS mechanism for path generation;Meccanica;2022-12-08

5. Exact 3D Path Generation via 3D Cam-Linkage Mechanisms;ACM Transactions on Graphics;2022-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3