Phase Change and Choked Flow Effects on Rotordynamic Coefficients of Cryogenic Annular Seals

Author:

Hassini Mohamed Amine1,Arghir Mihai2

Affiliation:

1. Institut Pprime, UPR3346 CNRS, Université de Poitiers, Poitiers, 86000, France; Centre National d’études Spatiales, CNES-DLA, Paris, 75612, France

2. Institut Pprime, UPR3346 CNRS, Université de Poitiers, Poitiers, 86000, France

Abstract

The present work deals with the numerical analysis of phase change effects and choked flow on the rotordynamic coefficients of cryogenic annular seals. The analysis is based on the “bulk flow” equations, with the energy equation written for the total enthalpy, and uses an estimation of the speed of sound that is valid for single- or two-phase flow as well. The numerical treatment of choked flow conditions is validated by comparisons with the experimental data of Hendricks (1987, “Straight Cylindrical Seal for High-Performance Turbomachines,” NASA Technical Paper No. 1850) obtained for gaseous nitrogen. The static characteristics and the dynamic coefficients of an annular seal working with liquid or gaseous oxygen are then investigated numerically. The same seal was used in previous analyses performed by Hughes et al. (1978, “Phase Change in Liquid Face Seals,” ASME J. Lubr. Technol., 100, pp. 74–80), Beatty and Hughes (1987, “Turbulent Two-Phase Flow in Annular Seals,” ASLE Trans., 30(1), pp. 11–18), and Arauz and San Andrés (1998, “Analysis of Two Phase Flow in Cryogenic Damper Seals. Part I: Theoretical Model,” ASME J. Tribol., 120, pp. 221–227 and 1998, “Analysis of Two Phase Flow in Cryogenic Damper Seals. Part 2: Model Validation and Predictions,” ASME J. Tribol., 120, pp. 228–233). The flow in the seal is unchoked, and rotordynamic coefficients show variations, with the excitation frequency depending if the flow is all liquid, all gas, or a liquid-gas mixture. Finally, the pressure ratio and length of the previous seal are changed in order to promote flow choking in the exit section. The rotordynamic coefficients calculated in this case show a dependence on the excitation frequency that differ from the unchoked seal.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3