Automated Methodology for Determination of Stress Distribution in Human Abdominal Aortic Aneurysm

Author:

Raghavan Madhavan L.12,Fillinger Mark F.3,Marra Steven P.4,Naegelein Bernhard P.4,Kennedy Francis E.4

Affiliation:

1. (319) 335 5704 (319) 335 5631

2. Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242

3. Department of Surgery, Dartmouth College, Hanover, NH

4. Thayer School of Engineering, Darmouth College, Hanover, NH

Abstract

Knowledge of impending abdominal aortic aneurysm (AAA) rupture can help in surgical planning. Typically, aneurysm diameter is used as the indicator of rupture, but recent studies have hypothesized that pressure-induced biomechanical stress may be a better predictor. Verification of this hypothesis on a large study population with ruptured and unruptured AAA is vital if stress is to be reliably used as a clinical prognosticator for AAA rupture risk. We have developed an automated algorithm to calculate the peak stress in patient-specific AAA models. The algorithm contains a mesh refinement module, finite element analysis module, and a postprocessing visualization module. Several aspects of the methodology used are an improvement over past reported approaches. The entire analysis may be run from a single command and is completed in less than 1h with the peak wall stress recorded for statistical analysis. We have used our algorithm for stress analysis of numerous ruptured and unruptured AAA models and report some of our results here. By current estimates, peak stress in the aortic wall appears to be a better predictor of rupture than AAA diameter. Further use of our algorithm is ongoing on larger study populations to convincingly verify these findings.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3