Ramifications of Vorticity on Aggregation and Activation of Platelets in Bi-Leaflet Mechanical Heart Valve: Fluid–Structure-Interaction Study

Author:

Ahmed Meraj1,Gupta Nirmal2,Jana Rashmoni3,Das Malay K.4,Kar Kamal K.5

Affiliation:

1. Advanced Nanoengineering Materials Laboratory, Department of Mechanical Engineering, IIT-Kanpur, Kanpur, UP 208016, India

2. Department of Cardiovascular and Thoracic Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, UP 226014, India

3. Department of Anatomy, Vardhman Mahavir Medical College and Safdarjung Hospital (VMMC and SJH), New Delhi 110029, India

4. Department of Mechanical Engineering, IIT-Kanpur, Kanpur, UP 208016, India

5. Advanced Nanoengineering Materials Laboratory, Department of Mechanical Engineering, IIT-Kanpur, Kanpur, UP 208016, India; Advanced Nanoengineering Materials Laboratory, Materials Science Program, IIT-Kanpur, Kanpur, UP 208016, India

Abstract

Abstract Bileaflet mechanical heart valves (BMHV) are widely implanted to replace diseased heart valves. Despite many improvements in design, these valves still suffer from various complications, such as valve dysfunction, tissue overgrowth, hemolysis, and thromboembolism. Thrombosis and thromboembolism are believed to be initiated by platelet activation due to contact with foreign surfaces and nonphysiological flow patterns. The implantation of the valve causes nonphysiological patterns of vortex shedding behind the leaflets. This study signifies the importance of vorticity in platelet activation and aggregation in BMHV implants. A two-phase model with the first Eulerian phase for blood and the second discrete phase for platelets is used here. The generalized cross model of viscosity has been used to simulate the non-Newtonian viscosity of blood. A fluid–structure-interaction model has been used to simulate the motion of leaflets. This study has also estimated the platelet activation state (PAS), which is the mathematical estimation of the degree of activation of platelets due to flow-induced shear stresses that cause thrombus formation. The regions in the fluid domain with a higher vorticity field have been found to contain platelets with relatively higher PAS than regions with relatively lower vorticity fields. Also, this study has quantitatively reported the effect of vorticity on platelet aggregation. Platelet densities in fluid areas with higher vorticity are higher than densities in fluid areas with lower vorticity, indicating that highly activated platelets aggregate in areas with stronger vorticity.

Funder

Ministry of Human Resource Development

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3