Effect of Outlet Shape on Flame Height of Transformer Oil Jet Fire Under External Fire Source

Author:

Sun Shaodong1,Chen Peng23,Zhai Xu1,Liu Yang1

Affiliation:

1. China University of Mining and Technology School of Emergency Management and Safety Engineering, , Beijing 100083 , China

2. China University of Mining and Technology School of Emergency Management and Safety Engineering, , Beijing 100083 , China ;

3. China Academy of Safety Science and Technology Beijing Key Lab of MFPTS, , Beijing 100012 , China

Abstract

Abstract In this inquiry, we delve into the manner by which disparate orifice configurations exert influence upon the elevation of the jet flame when subjected to an external conflagration, employing empirical simulations. Elaborating upon the empirical dataset, we introduce the derivative of hydraulic diameter alterations and the velocity of material degradation, thereby revising the traditional non-dimensionalized model of flame altitude. The revelations disclose that, across an array of orifice profiles, the conflagration jet within oil-laden apparatus undergoes four discernible phases of evolution, each replete with variable flambeau altitudes. In disparate operational circumstances, the quantified velocity of material degradation during the evolution phase manifests an exponential interrelation with the approximated value of the model. Conversely, the phases of stability and decline adhere to a potency function connection. A quantitative delineation of the pivotal states for each phase of combustion is achieved through the evaluation of the rate of alteration in the velocity of material degradation. Significantly, the pivotal juncture for the proliferation and equilibrium stage is ascertained to be 2 g/s. This scientific inquiry confers invaluable theoretical reinforcement for fire safeguarding and catastrophe evaluation within substations accommodating oil-infused apparatus.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3