Fractal Geometry Rooted Incremental Toolpath for Incremental Sheet Forming

Author:

Nirala Harish K.1,Agrawal Anupam1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India e-mail:

Abstract

Single point incremental sheet forming (SPISF) technique is an emerging process for die less forming. It has wide applications in many industries viz. automobile and medical bone transplants. Among several key parameters, toolpath planning is one of the critical aspects of SPISF. Also, formability and geometric accuracy have been the two major limitations in SPISF. Spiral and constant incremental toolpaths and their variants have been investigated in detail by several researchers. Fractal-based toolpath planning is also an attempt to improve the process of SPISF. Formability is measured in terms of thickness distribution and maximum forming depth achieved. This paper investigates a fractal geometry-based incremental toolpath (FGBIT) strategy to form a square cup using incremental sheet forming (ISF). Fractal toolpath is a space-filling toolpath which is developed by the fractal geometry theory. A comparison-based study is conducted to observe the benefits of using FGBIT over traditional toolpaths (spiral and constant Z). Better formability, stress, and thickness distribution have been observed by adopting the proposed toolpath strategy. This toolpath strategy is new in its kind and has not been investigated in the metal forming domain. Experiments and simulations are conducted to validate the concept with reasonable accuracy.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference49 articles.

1. Wall Thickness Variations in Single-Point Incremental Forming;Proc. Inst. Mech. Eng., Part B,2004

2. Asymmetric Single Point Incremental Forming of Sheet Metal;CIRP Ann. Manuf. Technol.,2005

3. The Mechanics of Incremental Sheet Forming;J. Mater. Process. Technol.,2009

4. Apparatus and Process for Incremental Dieless Forming,1967

5. Mason, B., 1978, “Sheet Metal Forming for Small Batches,” Bachelor thesis, University of Nottingham, Nottingham, UK.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3