Additive Manufacturing With Conductive, Viscoelastic Polymer Composites: Direct-Ink-Writing of Electrolytic and Anodic Poly(Ethylene Oxide) Composites

Author:

Nesaei Sepehr1,Rock Mitch1,Wang Yu1,Kessler Michael R.1,Gozen Arda1

Affiliation:

1. School of Mechanical and Materials Engineering, Washington State University, 405 NE Spokane Street, Pullman, WA 99164 e-mail:

Abstract

Conductive viscoelastic polymer composites (CVPCs) consisting of conductive fillers in viscoelastic polymer matrices find numerous applications in emerging technologies such as flexible electronics, energy storage, and biochemical sensing. Additive manufacturing methods at micro- and mesoscales provide exciting opportunities toward realizing the unique capabilities of such material systems. In this paper, we study the direct-ink-writing (DIW) process of CVPCs consisting of electrically conductive additives in a poly(ethylene oxide) (PEO) matrix. We particularly focus on the deposition mechanisms of the DIW process and the influence of these mechanisms on the printed structure geometry, morphology, and functional properties. To this end, we utilized a novel practical approach of modeling the ink extrusion through the nozzles considering the non-Newtonian viscous effects while capturing the viscoelastic extensional flow (drawing) effects through the variation of the nozzle exit pressure. We concluded that inks containing higher amounts of high molecular weight (HMW) PEO exhibit drawing type deposition at high printing speeds and low inlet pressures enabling thinner, higher aspect ratio structures with ideal three-dimensional stacking. Under this deposition mechanism, the electrical conductivity of the anodic structures decreased with increasing printing speed, indicating the effect of the drawing mechanism on the printed structure morphology.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3