Prognostication Based on Resistance-Spectroscopy and Phase-Sensitive Detection for Electronics Subjected to Shock-Impact

Author:

Lall Pradeep1,Lowe Ryan1,Goebel Kai2

Affiliation:

1. Department of Mechanical Engineering, NSF Center for Advanced Vehicle and Extreme Environment Electronics (CAVE3), Auburn University, Auburn, AL 36849

2. Prognostics Center of Excellence, NASA Ames Research Center, Moffett Field, CA 94035

Abstract

Leading indicators of failure have been developed based on high-frequency characteristics, and system-transfer function derived from resistance spectroscopy measurements during shock and vibration. The technique is intended for condition-monitoring in high-reliability applications where the knowledge of impending failure is critical and the risks in terms of loss-of-functionality are too high to bear. Previously, resistance spectroscopy measurements have been used during thermal cycling tests to monitor damage progression due to thermomechanical stresses. The development of resistance spectroscopy based damage precursors for prognostication under shock and vibration is new. In this paper, the high-frequency characteristics and system-transfer function based on resistance spectroscopy measurements have been correlated to the damage progression in electronics during shock and vibration. Packages being examined include ceramic area-array packages. Second level interconnect technologies examined include copper-reinforced solder column, SAC305 solder ball, and 90Pb10Sn high-lead solder ball. Assemblies have been subjected to 1500 g, 0.5 ms pulse (JESD-B2111). Continuity has been monitored in situ during the shock test for identification of part-failure. Resistance spectroscopy based damage precursors have been correlated to the optically measured transient strain based feature vectors. High speed cameras have been used to capture the transient strain histories during shock-impact. Statistical pattern recognition techniques have been used to identify damage initiation and progression and determine the statistical significance in variance between healthy and damaged assemblies. Models for healthy and damaged packages have been developed based on package characteristics. Data presented show that high-frequency characteristics and system-transfer characteristics based on resistance spectroscopy measurements can be used for condition-monitoring, damage initiation, and progression in electronic systems. A positive prognostic distance has been demonstrated for each of the interconnect technologies tested.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nondestructive wire fault diagnosis using resistance spectroscopy analysis;Journal of Mechanical Science and Technology;2019-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3