Mixed Convection Along a Semi-Infinite Vertical Flat Plate With Uniform Surface Heat Flux

Author:

Moulic S. Ghosh1,Yao L. S.2

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, Kharagpur 721302, India

2. Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287-6106

Abstract

Mixed-convection boundary-layer flow over a heated semi-infinite vertical flat plate with uniform surface heat flux, placed in a uniform isothermal upward freestream, has been investigated. Near the leading edge, the effect of natural convection can be treated as a small perturbation term. The effects of natural convection are accumulative and increase downstream. In the second region, downstream of the leading-edge region, natural convection eventually becomes as important as forced convection. The boundary-layer equations have been solved by an adaptive finite-difference marching technique. The numerical solution indicates that the series solution of the leading-edge region is included in that of the second region. This property is shared by many developing flows. However, the series solutions of local similarity or local nonsimilarity are only valid for very small distances from the leading edge. Numerical results for the local skin-friction factor, wall temperature, and local Nusselt number are presented for Pr=1 for a wide range of Grx*∕Rex5∕2, where Grx* is a local modified Grashof number and Rex is a local Reynolds number. The results indicate that cfxRex1∕2 and NuxRex–1∕2 increase monotonically with distance from the leading edge, where cfx is the local skin-friction factor and Nux is the local Nusselt number, and approach the free-convection limit at large values of Grx*∕Rex5∕2, although the velocity distribution differs from the velocity distribution in a free-convection boundary layer.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3