Underlying Mechanisms of the Electrolyte Structure and Dynamics on the Doped-Anode of Magnesium Batteries Based on the Molecular Dynamics Simulations

Author:

Liu Y.1,Yan H.H.1,Cui X.Y.1

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China

Abstract

AbstractAs a potential energy storage cell, the rechargeable magnesium (Mg) battery is limited by poor solid-state diffusion of Mg2+. Hence, the fundamental mechanisms between the electrolyte and the Mg electrode need to be deeply explored. In this work, a doped-Mg electrode/MgCl2 aqueous electrolyte system is constructed to explore the electrolyte structure and transport properties of ions through molecular dynamics simulations. Then, extensive simulations are conducted to study the effect of the doping levels on the electrode/electrolyte interface and ionic diffusivity. According to the number densities of different electrodes (i.e., Mg–Zn, Mg–Al, Mg–Si, and pure Mg), the Mg–Si electrode shows the strongest attraction to the ions in the electrolyte, indicating that the Mg–Si electrode can provide a higher ion storage performance. Moreover, the simulation results also show that the electrode capacitance presents a similar non-monotonic relationship with the increase of potential well depth under different doping ratios. At the doping ratio of 9%, the potential well depth has the strongest impact on the electric double layer (EDL) thickness compared with that of the other two doping ratios. The diffusion coefficient of water molecules weakly depends on the doping ratios and electrode materials. In contrast, the diffusion coefficient of ions varies strongly with the electrode materials, which could change up to 10–30% from its reference value (the diffusion coefficient of the Mg electrode system). This study will potentially provide an understanding of the influences of doped-Mg metal anodes on the structure and transport characteristics of Mg rechargeable batteries.

Funder

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

National Key R&D Program of China

National Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3