High-Gain-Observer-Based Predictive Output Feedback for Nonlinear Systems With Large Input-Delays

Author:

Lei Jing1

Affiliation:

1. School of Mathematics and Statistics, Taishan University , Tai'an 271000, China

Abstract

Abstract The predictor feedback has been demonstrated to be quite effective in large delay compensation. However, few researches in the field of predictor feedback for large delays focused on output feedback control (OFC). This paper develops the previous work to design high-gain-observer-based predictive output feedback for nonlinear systems with large delays. Two methods are employed for large delay compensation: the backstepping-based partial differential equation (PDE) method and the reduction-based ordinary differential equation (ODE) method. It appears that, for continuous-time control, the first method leads to simpler linear matrix inequality (LMI) conditions and deal with larger delays, whereas the second method is easily exploited for sampled-data implementation under continuous-time measurement. Lyapunov–Krasovskii method is presented to guarantee the exponential stability of the nonlinear systems under predictor-based controllers. Through a simulation example of pendulum, the proposed methods are demonstrated to be efficient when the input delays are too large for the system to be stabilized without a predictor.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference34 articles.

1. Continuous-Time and Sampled-Data Stabilizers for Nonlinear Systems With Input and Measurement Delays;IEEE Trans. Autom. Control,2019

2. Decentralized Networked Control of Systems With Local Networks: A Time-Delay Approach;Automatica,2016

3. A New Delay System Approach to Network-Based Control;Automatica,2008

4. High-Gain-Predictor-Based Output Feedback Control for Time-Delay Nonlinear Systems;Automatica,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3