A New Method to Calculate the Coolant Requirements of a High-Temperature Gas Turbine Blade

Author:

Torbidoni Leonardo1,Horlock J. H.2

Affiliation:

1. TPG-DiMSET, Universita` di Genova, Genova, Italy

2. Whittle Laboratory, University of Cambridge, Cambridge, UK

Abstract

Earlier papers by the first author have described a computational method of estimating the cooling flow requirements of blade rows in a high-temperature gas turbine, for convective cooling alone and for convective plus film cooling. This method of analysis and computation, when applied to the whole blade chord was compared to a well-known semi-empirical method. In the current paper, a more sophisticated method is developed from the earlier work and is used to calculate the cooling flow required for a nozzle guide vane (the first blade row) of a high-temperature gas turbine, with given inlet gas temperature and coolant inlet temperature. Now the heat flux through an elementary cross-sectional area of the blade, at given spanwise (y) and chordwise (s) locations, is considered, with a guessed value of the elementary coolant flow [as a fraction dΨs of the external gas flow]. At the given s, integration along the blade length gives the blade metal temperatures at the outer and inner walls, Tbgy and Tbcly. If the value of Tbg at the blade tip y=H is assumed to be limited by material considerations to Tbg,max then the elementary coolant flow rate may be obtained by iteration. Summation along the chord then gives the total coolant flow, for the whole blade. Results using the method are then compared to a simpler calculation applied to the whole blade, which assumes chordwise constant temperatures and constant selected values of cooling efficiency and film-cooling effectiveness.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3