Unsteady Aerodynamics and Aeroacoustics of a High-Bypass Ratio Fan Stage

Author:

Prasad Anil1,Prasad Dilip1

Affiliation:

1. Aerodynamics Division, Pratt & Whitney Aircraft Engines, East Hartford, CT 06108

Abstract

A numerical investigation of the unsteady aerodynamics of a fan stage comprised of a transonic rotor, swept fan exit guide vane (FEGV), and low-pressure compressor inlet guide vane (IGV) is described, with emphasis on acoustics. It is shown that the effects of the two downstream stator rows on the time-mean blade flow field are negligible, permitting its investigation using isolated rotor calculations. Simulations of this type are carried out along the engine operating line to quantify the acoustic sources associated with the upstream shock field and wake turbulence-stator interaction. The shock noise achieves its maximum value near the flyover acoustic certification condition, while the wake turbulence is least at this condition owing to its proximity to the design point. The behavior of these noise sources is explained physically by carrying out a detailed examination of the rotor flow field. The unsteady interaction between the rotor and stator rows at a high-power setting is investigated next. It is shown that the time-mean IGV flow is significantly affected by this interaction. Moreover, the unsteady loading on the IGV is found to be large. The behavior of the upstream-propagating acoustic field generated by rotor-IGV interaction is examined. The interaction between the rotor and FEGV is found to be linear in nature. The FEGV surface unsteady pressure and far-field acoustic field behavior are investigated.

Publisher

ASME International

Subject

Mechanical Engineering

Reference30 articles.

1. Cumpsty, N. A. , 1977, “A Critical Review of Turbomachinery Noise,” ASME J. Fluids Eng., 99, pp. 278–293.

2. Smith, M. J. T., 1989, Aircraft Noise, Cambridge University Press, Cambridge, England.

3. Morin, B. L., 1999, “Broadband Fan Noise Prediction System for Gas Turbine Engines,” AIAA Paper No. 99-1889.

4. Verdon, J. M., Montgomery, M. D., and Chuang, H. A., “Development of a Linearized Unsteady Euler Analysis With Application to Wake/Blade-Row Interactions,” NASA CR-1999-208879.

5. Ni, R.-H. , 1982, “A Multiple-Grid Scheme for Solving Euler Equations,” AIAA J., 20, pp. 1565–1571.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3