Effect of Structure on Wear Resistance of Co-, Fe-, and Ni-Base Alloys

Author:

Silence William L.1

Affiliation:

1. Stellite R&D Department, Technology Division, Cabot Corporation, Kokomo, Ind. 46901

Abstract

Alloy characteristics that relate directly to wear resistance are much sought after, but elusive. Attempts have been made to correlate wear resistance with mechanical and physical properties, including hardness, but only with limited success. During the course of this investigation, cast, wrought, and hard facing wear alloys were processed using various casting, consolidation and deposition techniques and evaluated using laboratory sand abrasion wear tests, and metal-to-metal (adhesive) wear tests. In general, superior abrasive wear resistance was obtained with those processing conditions that produced microstructures which contained coarse carbide morphologies. No general relationship between hardness and abrasive or adhesive wear was found in this processing study. Little effect of processing, structure or hardness was observed on metal-to-metal wear. Where chemical similarity and common structural condition between the commercial alloys tested allows comment on chemical effects, carbon appeared to be the most effective variable; particularly with abrasive wear where resistance increased with increasing carbon level and volume percent of carbide phases present.

Publisher

ASME International

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3