Affiliation:
1. Dipartimento di Ingegneria Industriale, Università di Perugia, Via G. Duranti 93, 06125 Perugia, Italy
Abstract
Steam methane reforming is the most common process for producing hydrogen in the world. It currently represents the most efficient and mature technology for this purpose. However, because of the high investment costs, this technology is only convenient for large sizes. Furthermore, the cooling of syngas and flue gas produce a great amount of excess steam, which is usually transferred outside the process, for heating purposes or industrial applications. The opportunity of using this additional steam to generate electric power has been studied in this paper. In particular, different power plant schemes have been analyzed, including (i) a Rankine cycle, (ii) a gas turbine simple cycle, and (iii) a gas-steam combined cycle. These configurations have been investigated with the additional feature of CO2 capture and sequestration. The reference plant has been modeled according to state-of-the-art of commercial hydrogen plants: it includes a prereforming reactor, two shift reactors, and a pressure swing adsorption unit for hydrogen purification. The plant has a conversion efficiency of ∼75% and produces 145,000Sm3∕hr of hydrogen (equivalent to 435MW on the lower-heating-volume basis) and 63t∕hr of superheated steam. The proposed power plants generate, respectively, 22MW (i), 36MW (ii), and 87MW (iii) without CO2 capture. A sensitivity analysis was carried out to determine the optimum size for each configuration and to investigate the influence of some parameters, such as electricity, natural gas, and steam costs.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Reference33 articles.
1. CO2 Capture and Removal System for a Gas-Steam Combined Cycle;Desideri
2. Comparison of Two CO2 Removal in Combined Cycle Power Plants;Bolland;Energy Convers. Manage.
3. Lurgi Oel Gas Chemie GmbH, “Hydrogen,” newsletter available at: www.lurgi.de/lurgi-headoffice-kopie/english/nbsp/menu/media/newsletter/hydrogen.pdf
4. Haldor Topsoe, www.haldortopsoe.com
5. Consider Using Hydrogen Plants to Cogenerate Power Needs;Terrible;Hydrocarbon Process.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献