Transient Large Eddy Simulation of Slurry Erosion in Submerged Impinging Jets

Author:

Wang Qiuchen12,Huang Qiyu3,Sun Xu3,Zhang Jun2,Karimi Soroor2,Shirazi Siamack A.2

Affiliation:

1. Surface Engineering Pilot Test Center/National Engineering Laboratory for Pipeline Safety/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Beijing 102249, China;

2. The Erosion/Corrosion Research Center, The University of Tulsa, Tulsa, OK 74104

3. Surface Engineering Pilot Test Center/National Engineering Laboratory for Pipeline Safety/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Beijing 102249, China

Abstract

Abstract Submerged impingement jets are widely used in erosion/corrosion experiments as it is easy to control jet standoff distance, jet angle, and flow velocities in experiments. In addition to experiments, typically computational fluid dynamics (CFD) technique has been used to simulate slurry flow in this geometry to investigate erosion process and develop erosion models or equations. The traditional CFD simulations of erosion in this geometry use the Reynolds-averaged Navier–Stokes (RANS) equations with turbulence models. By using this technique, time-averaged fluid flow is revealed, and thus, time-averaged erosion rate can be obtained by tracking particles in the fluid flow field. However, this seemingly simple flow displays unsteady flow structures in the stagnation zone of the flow field and its effects on the erosion process were previously unclear. In this study, large eddy simulation (LES) is used to simulate unsteady fluid flow in different impingement jets in an Eulerian scheme. Then, transient particle tracking is performed in a Lagrangian scheme. Particles are injected randomly at the inlet plane and tracked to simulate unsteady erosion that occurs on the target surface. Finally, an erosion equation is used to calculate solid particle erosion rates. The LES Eulerian–Lagrangian erosion modeling is further validated by available experimental data for fluid velocities and an erosion profile. The results show that the accuracy of erosion prediction of small particles is improved significantly by using the LES method. In addition, the unsteady particle motion and erosion process can be revealed by using this method.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

University of Tulsa

China Scholarship Council

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3