Affiliation:
1. Mem. ASME National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 e-mail:
Abstract
Robot accuracy degradation sensing, monitoring, and assessment are critical activities in many industrial robot applications, especially when it comes to the high accuracy operations which may include welding, material removal, robotic drilling, and robot riveting. The degradation of robot tool center accuracy can increase the likelihood of unexpected shutdowns and decrease manufacturing quality and production efficiency. The development of monitoring, diagnostic and prognostic (collectively known as prognostics and health management (PHM)) technologies can aid manufacturers in maintaining the performance of robot systems. PHM can provide the techniques and tools to support the specification of a robot’s present and future health state and optimization of maintenance strategies. This paper presents the robotic PHM research and the development of a quick health assessment at the U.S. National Institute of Standards and Technology (NIST). The research effort includes the advanced sensing development to measure the robot tool center position and orientation; a test method to generate a robot motion plan; an advanced robot error model that handles the geometric/nongeometric errors and the uncertainties of the measurement system, and algorithms to process measured data to assess the robot’s accuracy degradation. The algorithm has no concept of the traditional derivative or gradient for algorithm converging. A use case is presented to demonstrate the feasibility of the methodology.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献