Predictions of Temperature and Pressure Fields Due to Collapse of a Bubble in Sulfuric Acid Solution Under Ultrasound

Author:

Alhelfi Ali1,Sundén Bengt2

Affiliation:

1. Department of Energy Sciences, Lund University, P.O. Box 118, Lund SE-22100, Sweden

2. Department of Energy Sciences, Lund University, P.O. Box 118, Lund SE-22100, Sweden e-mail:

Abstract

A gas bubble under the influence of an ultrasonic field so strong to destroy any material due to high pressures and temperatures reached during the collapse is the topic of the present paper. In the current work, simulations have been performed to describe the radial dynamics of a gas (argon) bubble being strongly forced to periodic oscillation in a highly viscous liquid like aqueous sulfuric acid solution. The basic equations for nonlinear bubble oscillation in a sound field are given, together with a survey of some important existing studies. The hydrodynamics forces acting on the bubble are taken into account to consider the bubble dynamics under the action of a sound wave. The theory permits one to predict correctly the bubble radius–time behavior and the characteristics of a microsize bubble in sulfuric acid solutions, such as the peak temperature and pressure fields generated at this occasion.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3