Study of Unforced and Modulated Film-Cooling Jets Using Proper Orthogonal Decomposition—Part I: Unforced Jets

Author:

Bidan Guillaume1,Vézier Clementine1,Nikitopoulos Dimitris E.2

Affiliation:

1. e-mail:

2. e-mail:  Turbine Innovation and Energy Research (TIER) Center Mechanical Engineering Department, Louisiana State University, Baton Rouge, LA 70803

Abstract

The effects of jet flow-rate modulation were investigated in the case of a 35 deg inclined jet in cross-flow over a flat plate using Mie scattering visualizations, time-resolved flow rate records, and large eddy simulations (LES). An unforced jet study was conducted over a wide range of blowing ratios to provide a baseline for comparison to the pulsed results. The two distinct and well known steady jet regimes (attached jet with high film cooling performance for BR < 0.4 and detached jet with poor film cooling performance for BR > 1.0) were related to the dynamics of characteristic vortical structures, significant in the transition from one regime to the other. Similarity of the inclined jet results with a past vertical jet study are also put in perspective when comparing wall adiabatic effectiveness results. 3D proper orthogonal decomposition (3D-POD) was performed on LES results of an unforced case at BR = 0.15 to provide an analysis of dominant modes in the velocity and temperature fields. Error calculations on the reconstructed fields provided an estimation of the number of modes necessary to obtain satisfactory reconstruction while revealing some of the shortcomings associated with POD.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3