The Biomechanical Function of Arterial Elastin in Solutes

Author:

Zou Yu1,Zhang Yanhang2

Affiliation:

1. Department of Mechanical Engineering, Boston University, 110 Cummington Street, Boston, MA 02215

2. Department of Mechanical Engineering; Department of Biomedical Engineering, Boston University, 110 Cummington Street, Boston, MA 02215

Abstract

Elastin is essential to accommodate physiological deformation and provide elastic support for blood vessels. As a long-lived extracellular matrix protein, elastin can suffer from cumulative effects of exposure to chemical damage, which greatly compromises the mechanical function of elastin. The mechanical properties of elastin are closely related to its microstructure and the external chemical environments. The purpose of this study is to investigate the changes in the macroscopic elastic and viscoelastic properties of isolated porcine aortic elastin under the effects of nonenzymatic mediated in vitro elastin–lipid interactions and glycation. Sodium dodecyl sulfate (SDS) was used for elastin–lipid interaction, while glucose was used for glycation of elastin. Elastin samples were incubated in SDS (20 mM) or glucose (2 M) solutions and were allowed to equilibrate for 48 h at room temperature. Control experiments were performed in 1  ×  Phosphate buffered saline (PBS). Biaxial tensile and stress relaxation experiments were performed to study the mechanical behavior of elastin with solute effects. Experimental results reveal that both the elastic and viscoelastic behaviors of elastin change in different biochemical solvents environments. The tangent stiffness of SDS treated elastin decreases to 63.57 ± 4.7% of the control condition in circumference and to 58.43 ± 2.65% in the longitude. Glucose treated elastin exhibits an increase in stiffness to 145.06 ± 1.48% of the control condition in the longitude but remains similar mechanical response in the circumferential direction. During stress relaxation experiments with a holding period of half an hour, elastin treated with SDS or glucose shows more prominent stress relaxation than the untreated ones.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference29 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3