Multiaxial Life Prediction System for Turbine Components

Author:

Arvanitis S. T.1,Symko Y. B.1,Tadros R. N.2

Affiliation:

1. Pratt and Whitney Canada Inc., Montreal, Canada

2. Structures and Dynamics, Pratt and Whitney Canada Inc., Montreal, Canada

Abstract

The objective of this paper is to present a complete three-dimensional life prediction system which was developed for turbine engine components. It will deal primarily with turbine blades and vanes which are subjected to hostile thermal and combustion environments under load which creates cyclic and/or steady multiaxial stress and strain fields. All of the above factors combined are detrimental to the service life of these components and need very careful consideration at the design stage. The developed multiaxial system for a mission includes evaluation of transient metal temperatures, corresponding elastic and inelastic strains, creep strains, and subsequently creep/fatigue lives. The calculations are performed using the ductility exhaustion method. The maximum principal normal strain ranges used in the life analysis are found by a developed procedure for a multiaxial system. The concept is based on analyzing all of the time steps computed in the mission, in order to develop the maximum principal normal strain range whose direction and magnitude is strictly a function of the component geometry and mission loading. The mission creep is then developed by maximizing a cumulative creep function. Directional consistency is maintained in accumulating creep/fatigue damage with respect to the incurred multiaxial stress and strain fields. Also the most damaging mission modes (creep or fatigue) will be separated. Further development in the model includes the capability of analytically obtaining the fatigue curve for any ratio R of minimum to maximum strain using baseline fatigue material properties (R = −1.0). Application of the model to an actual uncooled vane correlates well with test rig development experience.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3