Contact Stresses Between an Elastic Cylinder and a Layered Elastic Solid

Author:

Gupta P. K.1,Walowit J. A.1

Affiliation:

1. Mechanical Technology Inc., Latham, N. Y.

Abstract

The generalized plane strain problem of the contact of layered elastic solids is reduced to an integral equation using Green’s function approach. Approximate numerical solutions are obtained by replacing the integral equation by a matrix inversion when the trapezoidal rule is used to represent the integral. Results for determining the actual contact pressure at the center of the contact zone and size of contact zone for a wide range of layer thicknesses are presented for two most practical cases, (i) when the indenter is rigid, and (ii) when the indenter is elastic having a modulus of elasticity equal to that of the substrate of the indented body. When the layer is softer than the substrate it is found that the actual contact pressure distribution is very closely determined by a weighted sum of elliptic and parabolic functions. For a substrate softer than the layer the pressures substantially deviate from an elliptical or parabolic behavior, for the cases when the layer thickness is finite. The analysis checks with the Hertzian solution in the extreme cases when the layer thickness either tends to zero or approaches infinity.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3