Microstructure and Corrosion of Laser Cladding Coatings on Titanium Alloy With Nd2O3

Author:

Han Guangyu1,Zhang Youfeng1

Affiliation:

1. School of Materials Engineering, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, China

Abstract

Abstract Composite coatings of TiB were successfully obtained on the surface of a Ti–6Al–4V alloy by in situ laser cladding technology using Ti/B/Nd2O3 powders. The microstructure and corrosion resistance of the fabricated composite coatings were investigated because relevant studies have been thus far limited in this field. The results indicate that the cladding coating and the substrate combined well via metallurgy after laser cladding treatment, and no obvious cracks were observed in the cladding coatings. The coatings comprise only the TiB and the α-Ti phase. The addition of Nd2O3 promoted the formation of a uniform and refined microstructure of the cladding coatings, and a well-defined structure was obtained when the added Nd2O3 content was 2 wt%. The microhardness of the cladding coating obviously improved by 3 to 4 fold above that of the Ti–6Al–4V substrate. Moreover, the corrosion properties significantly improved by adding Nd2O3 into the coatings. Electrical impedance spectroscopy and polarization tests showed that the best corrosion resistance of the cladding coating was achieved with the addition of 2 wt% Nd2O3. All samples revealed obvious near-capacitive behavior after immersion in a corrosive medium.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3