sFEA: A Secure Finite Element Analysis Technique

Author:

Chaduvula Siva C.1,Atallah Mikhail J.2,Panchal Jitesh H.1

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

2. Department of Computer Science, Purdue University, West Lafayette, IN 47907

Abstract

Designers need a way to overcome information-related risks, including information leakage and misuse by their own collaborators during collaborative product realization. Existing cryptographic techniques aimed at overcoming these information-related risks are computationally expensive and impractical even for moderate problem sizes, and legal approaches such as nondisclosure agreements are not effective. The computational practicality problem is particularly pronounced for computational techniques, such as the finite element analysis (FEA). In this paper, we propose a technique that enables designers to perform simulations, such as FEA computations, without the need for revealing their information to anyone, including their design collaborators. We present a new approach, the secure finite element analysis approach, which enables designers to perform FEA without having to reveal structural/material information to their counterparts even though the computed answer depends on all the collaborators' confidential information. We build secure finite element analysis (sFEA) using computationally efficient protocols implementing a secure codesign (SCD) framework. One of our findings is that the direct implementation of using SCD framework (termed as naïve sFEA) suffers from lack of scalability. To overcome these limitations, we propose hybrid sFEA that implements performance improvement strategies. We document and discuss the experiments we conducted to determine the computational overhead imposed by both naïve and hybrid sFEA. The results indicate that the computational burden imposed by hybrid sFEA makes it challenging for large-scale FEA—our scheme significantly increases the problem sizes that can be handled when compared to implementations using previous algorithms and protocols, but large enough problem sizes will swamp our scheme as well (in some sense this is unavoidable because of the cubic nature of the FEA time complexity).

Funder

National Science Foundation

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference30 articles.

1. Case-Based Conceptual Design Information Server for Concurrent Engineering;Comput.-Aided Des.,1996

2. A Design Chain Collaboration Framework Using Reference Models;Int. J. Adv. Manuf. Technol.,2005

3. Collaborative Product Commerce: Creating Value Across the Enterprise

4. Secure Codesign: Achieving Optimality Without Revealing;ASME J. Comput. Inf. Sci. Eng.,2018

5. Information and Knowledge Leakage in Supply Chain;Inf. Syst. Front.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Grid-Based Secure Product Data Exchange for Cloud-Based Collaborative Design;International Journal of Cooperative Information Systems;2020-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3