Experimental and Numerical Analysis of Different Unsteady Modes in a Centrifugal Compressor With Variable Vaned Diffuser

Author:

Xue Xiang1,Wang Tong1,Shao Yuchang1,Yang Bo1,Gu Chuangang1

Affiliation:

1. Gas Turbine Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China e-mail:

Abstract

The flow instability always varies within different compressors; however, even in one compressor, there may be still multiple various unsteady modes. To study the triggering mechanism for these unsteady modes, a detailed experimental research on an industrial centrifugal compressor with variable vaned diffuser is performed from design point to surge. The multiposition dynamic pressure measurement is conducted during the whole valve-adjusting process. The characteristics of pressure fields under some specific operating conditions are focused on, especially the prestall, stall and surge conditions. According to the collected data, the features of different unsteady modes can be obtained, such as the surge pattern and the propagation direction of stall cells. In addition, when the diffuser vane setting angle (DVA) is adjusted, the core factors to trigger total instability will change. To better complement the experimental analysis, a multipassage numerical simulation is carried out. Based on the agreement of performance curves obtained by the two methods, the flow field characteristics in the prestall state shown in the simulation results are indeed a good complement to the dynamic experimental analysis. Meanwhile, with the help of dynamic mode decomposition (DMD) method, a few low-frequency unsteady structures are extracted from the transient numerical result over a long time, which correlate with the experimental result. Through detailed analysis, an insight into the different unsteady modes in a centrifugal compressor with variable vaned diffuser is obtained.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3