Weight-Free Multi-Objective Predictive Cruise Control of Autonomous Vehicles in Integrated Perturbation Analysis and Sequential Quadratic Programming Optimization Framework

Author:

He Defeng12,Shi Yujie3,Song Xiulan3

Affiliation:

1. College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China;

2. State Key Laboratory of Automotive Simulation and Control, Changchun 130025, China e-mail:

3. College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China e-mail:

Abstract

Adaptive cruise control of autonomous vehicles can be posed as a multi-objective optimization problem where several conflicting criteria, e.g., fuel economy, tracking capability, ride comfort, and safety, need to be satisfied simultaneously. In order to reconcile these conflicting criteria, this paper presents a novel multi-objective predictive cruise control (MOPCC) approach in the feasible perturbation-based real-time iterative optimization framework. The longitudinal dynamics of vehicles are described as nonlinear car-tracking models. The new cost function for MOPCC is defined as the distance of the criteria vector to the vector of separately minimized criteria (i.e., a utopia point of the criteria). The weight-free MOPCC is then obtained by solving a constrained nonlinear optimal control problem in receding horizon fashion. Due to the difficulty in solving the optimization problem, the integrated perturbation analysis and sequential quadratic programming (InPA-SQP) is employed to compute the cruise controller. The merit of the proposed MOPCC is that it can systematically handle different cruise scenarios regardless of the weights of the predictive cruise control (PCC) criteria. Several driving cases are used to demonstrate the effectiveness and benefits of the proposed approach via comparing to weighted PCC approaches.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3