A Progressive Damage Mechanics in Particle-Reinforced Metal-Matrix Composites Under High Triaxial Tension

Author:

Tohgo Keiichiro1,Weng G. J.2

Affiliation:

1. Department of Mechanical Engineering, Shizuoka University, 5-1, Johoku 3-chome, Hamamatsu 432, Japan

2. Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, NJ 08903

Abstract

The energy approach recently proposed by Qiu and Weng (1992) is introduced to estimate the equivalent stress of the ductile matrix in Tohgo and Chou’s (1991) incremental damage theory for particulate-reinforced composites containing hard particles. In such a composite debonding of the particle-matrix interface is a significant damage process, as the damaged particles have a weakening effect while the intact particles have a reinforcing effect. In Tohgo-Chou’s theory, which describes the elastic-plastic behavior and the damage behavior of particulate-reinforced composites, it was assumed that the debonding damage is controlled by the stress of the particle and the statistical behavior of the particle-matrix interfacial strength, and that the debonded (damaged) particles are regarded as voids, resulting in an increased void concentration with deformation. On the other hand, Qiu-Weng’s energy approach provides a reasonable equivalent stress of the matrix in the porous material and particulate-reinforced composite even under a high triaxiality. The incremental damage theory developed here enables one to calculate the overall stress-strain response and damage evolution of the composite under high triaxial tension. The stress-strain relations for porous material obtained by the present incremental theory are completely consistent with that obtained by Qiu and Weng. The influence of the debonding damage on the stress-strain response is demonstrated for particulate-reinforced composites.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3