Damage Mechanics of Two-Dimensional Woven SiC/SiC Composites

Author:

Shan Hui-Zu1,Pluvinage Philippe1,Parvizi-Majidi Azar1,Chou Tsu-Wei1

Affiliation:

1. Center for Composite Materials and Department of Mechanical Engineering, University of Delaware, Newark, DE 19716

Abstract

The paper reports an analysis and modeling of the damage behavior of two-dimensional woven SiC/SiC composites. The damage mechanics analysis originally developed by Ladeveze and coworkers for polymeric and C/C composites are adopted and extended for ceramic matrix composites. The experimental findings of the coauthors reported in a companion paper provides the data for analytical modeling. The damage model assumes quasi-isotropic elastic behavior of the undamaged SiC/ SiC composites as well as orthotropic damage development (e.g., matrix microcracking, interfacial debonding, and fiber fracture). The model utilize two damage variables which are determined from experimental data; and the constitutive relation takes into account the difference in damage development between tension and compression in the principal material directions. The validity of the theory is demonstrated by the prediction of damage evolution of a SiC/SiC specimen under four-point bend test based upon the experimental data of tension and compression tests. A finite element method coupled with damage is adopted for the flexural analysis. The predictions agree quite well with experimental results.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3