In-Situ Shrinkage Sensor for Injection Molding

Author:

Panchal Rahul R.1,Kazmer David O.1

Affiliation:

1. Department of Plastics Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854

Abstract

Dimensional consistency is a critical attribute for injection molded part quality and is highly dependent on the polymer morphology, the thermal expansion, and various processing parameters. The dimensional shrinkage can be estimated by knowing the pressure-volume-temperature behavior of the polymer but with limited accuracy. There are various process monitoring systems available in the market; none of which has the capability of directly monitoring and controlling the real time shrinkage and part dimensions online. With a view to measuring in-mold shrinkage, a button cell type in-mold shrinkage sensor was developed, validated, and compared against the traditional shrinkage prediction and estimation methods. The shrinkage sensor consists of an elastic diaphragm instrumented with strain gages connected in a full bridge circuit. The sensor is placed beneath the movable pin that is protruded into the mold cavity and remains in contact with the sensor diaphragm. The sensor diaphragm is deflected due to the melt pressure acting on the pin into the mold cavity and is retracted back toward its original position as the melt solidifies and shrinks away from the mold cavity wall. The sensor signals acquired during each molding cycle were analyzed to validate the sensor performance in a design of experiments as a function of packing pressure, melt temperature, cooling time, and coolant temperature. The regression results indicate that the shrinkage sensor outperforms cavity pressure transducers and other methods of predicting the in-mold shrinkage. For polypropylene, the shrinkage sensor is able to measure the shrinkage to an average accuracy of 0.01 mm for a molded part with a nominal thickness of 2.5 mm. The coefficient of correlation, R2, between the sensor’s final positions to the final part thickness was 0.921 for the in-mold shrinkage sensor. Other dimension prediction methods had lower correlation coefficients.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference29 articles.

1. Calculation of Residual Stresses in Injection Molded Products;Baaijens;Rheol. Acta

2. High Accuracy Shrinkage and Warpage Prediction for Injection Molding;Kennedy

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3