Optimization of Triple Effect Vapor Absorption Refrigeration System: A Statistical Approach

Author:

Naga Sakshi1,Rajput S. P. S.1

Affiliation:

1. Maulana Azad National Institute of Technology Department of Mechanical Engineering, , Bhopal 462003, Madhya Pradesh , India

Abstract

Abstract The present paper optimized the first and second law performance of the triple-effect vapor absorption refrigeration systems (TE-VARS) using statistical techniques like Taguchi, Taguchi-based gray relational analysis (GRA), and response surface methodology (RSM)-based GRA methods, which provide the most accurate and optimized results. Liquified petroleum gas (LPG) and compressed natural gas (CNG) are considered as the source of energy to operate TE-VARS, as the system requires significantly higher generator temperature. Also, volume flowrate of these gases along with the annual operating cost to drive the system have been presented. A thermodynamic model was first formulated using engineering equation solver (ees) software for the computation of the coefficient of performance (COP) and exergetic efficiency (ECOP). The most influential parameters like temperature in the main generator, concentration, and pressure at different components are studied and determined using analysis of variance (ANOVA) and Taguchi methods. The optimum parameters were determined based on the mean effect plot of S/N ratios for COP and ECOP. It has been found that the maximum COP and ECOP were calculated to be 1.915 and 0.15, respectively, under the Taguchi method. Furthermore, Taguchi-GRA was used for the simultaneous optimization of the operating parameters and performance of the system. It is observed that the absorber temperature is the most influential parameter for affecting COP and ECOP. Moreover, a RSM-based GRA method was also applied and developed regression models that yield most optimum COP and ECOP as 1.963 and 0.1606, respectively. Comparison shows that the RSM-based GRA method provides the most optimum conditions, which is one of the key finding of the present study. Also, rate of exergy destruction at each component of TE-VARS has been plotted under optimized operating conditions. The optimum volume flowrate for LPG and CNG comes out to be 0.057 and 0.177 m3/s, while the minimum operating cost (yearly) are 299.827$ and 183.293$, respectively.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3