A Review of Fuel Pre-injection in Supersonic, Chemically Reacting Flows

Author:

Vinogradov Viacheslav A.1,Shikhman Yurii M.1,Segal Corin2

Affiliation:

1. Central Institute of Aviation Motors, Moscow, Russia

2. University of Florida, Gainesville, FL

Abstract

Developing an efficient, supersonic combustion-based, air breathing propulsion cycle operating above Mach 3.5, especially when conventional hydrocarbon fuels are sought and particularly when liquid fuels are preferred to increase density, requires mostly effective mechanisms to improve mixing efficiency. One way to extend the time available for mixing is to inject part of the fuel upstream of the vehicle’s combustion chamber. Injection from the wall remains one of the most challenging problems in supersonic aerodynamics, including the requirement to minimize impulse losses, improve fuel-air mixing, reduce inlet∕combustor interactions, and promote flame stability. This article presents a review of studies involving liquid and, in selected cases, gaseous fuel injected in supersonic inlets or in combustor’s insulators. In all these studies, the fuel was injected from a wall in a wake of thin swept pylons at low dynamic pressure ratios (qjet∕qair=0.6–1.5), including individual pylon∕injector geometries and combinations in the inlet and combustor’s isolator, a variety of injection conditions, different injectants, and evaluated their effects on fuel plume spray, impulse losses, and mixing efficiency. This review article cites 47 references.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3