To Achieve the Best Performance Through Optimization of Gas Delivery and Current Collection in Solid Oxide Fuel Cells

Author:

Li P. W.1,Chen S. P.1,Chyu M. K.1

Affiliation:

1. Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, PA 15261

Abstract

Aimed at improving the maximum available power density in a planar-type solid oxide fuel cell, an analytical model is proposed in this work to find the optimum size of a current collector that collects the current from a specific active area of the electrode-electrolyte layer. Distributed three-dimensional current collectors in gas delivery field are designated to allow a larger area of the electrode-electrolyte layer to be active for electrochemical reaction compared to conventional designs that gas channels are separated by current collectors. It has been found that the optimal operating temperature of a planar-type solid oxide fuel cell might be around 850°C, if the sizes of the distributed current collectors and their control areas are optimized. Decreasing the size of both the current collector and its control area is advantageous in achieving a higher power density. Studies also show that the optimal sizes of the current collector and the current collection area investigated at 850°C and zero concentration polarization are applicable to situations of different operating temperatures, and different concentration polarizations. The optimization results of the sizes of current collectors and their control areas are relatively sensitive to the contact resistance between the current collectors and the electrodes of the fuel cell. Results of great significance are provided in the analysis, which will help designers to account for the variation of contact resistance in optimization designing of a bipolar plate of fuel cells.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3