Dynamic Simulation of an Integrated Solid Oxide Fuel Cell System Including Current-Based Fuel Flow Control

Author:

Mueller Fabian1,Brouwer Jacob1,Jabbari Faryar1,Samuelsen Scott1

Affiliation:

1. Mechanical and Aerospace Engineering Department, National Fuel Cell Research Center, University of California, Irvine, CA 92697

Abstract

A two-dimensional dynamic model was created for a Siemens Westinghouse type tubular solid oxide fuel cell (SOFC). This SOFC model was integrated with simulation modules for other system components (e.g., reformer, combustion chamber, and dissipater) to comprise a system model that can simulate an integrated 25kw SOFC system located at the University of California, Irvine. A comparison of steady-state model results to data suggests that the integrated model can well predict actual system power performance to within 3%, and temperature to within 5%. In addition, the model predictions well characterize observed voltage and temperature transients that are representative of tubular SOFC system performance. The characteristic voltage transient due to changes in SOFC hydrogen concentration has a time scale that is shown to be on the order of seconds while the characteristic temperature transient is on the order of hours. Voltage transients due to hydrogen concentration change are investigated in detail. Particularly, the results reinforce the importance of maintaining fuel utilization during transient operation. The model is shown to be a useful tool for investigating the impacts of component response characteristics on overall system dynamic performance. Current-based flow control (CBFC), a control strategy of changing the fuel flow rate in proportion to the fuel cell current is tested and shown to be highly effective. The results further demonstrate the impact of fuel flow delay that may result from slow dynamic responses of control valves, and that such flow delays impose major limitations on the system transient response capability.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference22 articles.

1. Effect of a SOFC Plant on Distribution System Stability;Jurado;J. Power Sources

2. US Navy Ship Service Fuel Cell Program;Nickens

3. Solid Oxide Fuel Cell Development Activities at Pacific Northwest National Laboratory;Stevenson

4. Fuel Cell APU’s in Commercial Aircraft-An Assessment of SOFC and PEMFC Concepts;Eelman

5. Development of Dynamic Modeling Tools For Solid Oxide and Molten Carbonate Hybrid Fuel Cell Gas Turbine Systems;Randall

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3