An Exponential Decay Model for the Deterministic Correlations in Axial Compressors

Author:

Liu Yangwei123,Tang Yumeng4,Liu Baojie15,Lu Lipeng15

Affiliation:

1. National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191, China;

2. Collaborative Innovation Center of Advanced Aero-Engine, Beihang University, Beijing 100191, China;

3. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, P.O. Box 211, Mianyang Sichuan 621000, China e-mail:

4. National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191, China e-mail:

5. Collaborative Innovation Center of Advanced Aero-Engine, Beihang University, Beijing 100191, China e-mail:

Abstract

The unsteady blade row interaction (UBRI) is inherent and usually has a large effect on performance in multistage axial compressors. The effect could be considered by using the average-passage equation system (APES) in steady-state environment by introducing the deterministic correlations (DC). How to model the DC is the key in APES method. The primary purpose of this study is to develop a DC model for compressor routine design. The APES technique is investigated by using a 3D viscous unsteady and time-averaging Computational fluid dynamics (CFD) flow solver developed in our previous studies. Based on DC characteristics and its effects on time-averaged flow, an exponential decay DC model is proposed and implemented into the developed time-averaging solver. Steady, unsteady, and time-averaging simulations are conducted on the investigation of the UBRI and the DC model in the first transonic stage of NASA 67 and the first two stages of a multistage compressor. The DC distributions and mean flow fields from the DC model are compared with the unsteady simulations. The comparison indicates that the proposed model can take into account the major part of UBRI and provide significant improvements for predicting compressor characteristics and spanwise distributions of flow properties in axial compressors, compared with the steady mixing plane method.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3