Experimental and Numerical Investigation of Environmental Barrier Coated Ceramic Matrix Composite Turbine Airfoil Erosion

Author:

Okita Yoji1,Mizokami Yousuke2,Hasegawa Jun2

Affiliation:

1. Corporate Research and Development, IHI Corporation, Yokohama 235-8501, Japan e-mail:

2. Aero-Engine and Space Operations, IHI Corporation, Tokyo 190-1297, Japan

Abstract

Ceramic matrix composite (CMC) have higher temperature durability and lower density property compared to nickel-based super-alloys which so far have been widely applied to hot section components of aero-engines/gas turbines. One of promising CMC systems, SiC–SiC CMC is able to sustain its mechanical property at higher temperature, though it inherently needs environmental barrier coating (EBC) to avoid oxidation. There are several requirements for EBC. One of such critical requirements is its resistance to particle erosion, whereas this subject has not been well investigated in the past. The present work presents the results of a combined experimental and numerical research to evaluate the erosion characteristics of CMC + EBC material developed by IHI. First, experiments were carried out in an erosion test facility using 50 μm diameter silica as erosion media under typical engine conditions with velocity of 225 m/s, temperature of 1311 K, and impingement angles of 30, 60, and 80 deg. The data displayed brittle erosion mode in that the erosion rate increased with impact angles. Also, it was verified that a typical erosion model, Neilson–Gilchrist model, can reproduce the experimental behavior fairly well if its model constants were properly determined. The numerical method solving particle-laden flow was then applied with the tuned erosion model to compute three dimensional flow field, particle trajectories, and erosion profile around a generic turbine airfoil to assess the erosion characteristics of the proposed CMC + EBC material when applied to airfoil. The trajectories indicated that the particles primarily impacted the airfoil leading edge and the pressure surface. Surface erosion patterns were predicted based on the calculated trajectories and the experimentally based erosion characteristics.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3