Affiliation:
1. University of Wisconsin at Madison, Madison, WI
Abstract
Homogeneous charge compression ignition (HCCI) is receiving attention as a new low emission engine concept. Little is known about the optimal operating conditions for this engine operation mode. Combustion at homogeneous, low equivalence ratio conditions results in modest temperature combustion products, containing very low concentrations of NOx and PM as well as providing high thermal efficiency. However, this combustion mode can produce higher HC and CO emissions than those of conventional engines. An electronically controlled Caterpillar single-cylinder oil test engine (SCOTE), originally designed for heavy-duty diesel applications, was converted to a HCCI direct-injection gasoline engine. The engine features an electronically controlled low-pressure common rail injector with a 60°-spray angle that is capable of multiple injections. The use of double injection was explored for emission control, and the engine was optimized using fully-automated experiments and a micro-genetic algorithm (μGA) optimization code. The variables changed during the optimization include the intake air temperature, start of injection timing, and split injection parameters (percent mass of the fuel in each injection, dwell between the pulses). The engine performance and emissions were determined at 700 rev/min with a constant fuel flow rate at 10 MPa fuel injection pressure. The results show that significant emissions reductions are possible with the use of optimal injection strategies.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献