Assessing Double Injection and Intake Air Temperature Effects on Gasoline HCCI Engine Performance and Emissions Using Fully-Automated Experiments and Micro-Genetic Algorithms

Author:

Canakci Mustafa1,Hruby Eric1,Reitz Rolf D.1

Affiliation:

1. University of Wisconsin at Madison, Madison, WI

Abstract

Homogeneous charge compression ignition (HCCI) is receiving attention as a new low emission engine concept. Little is known about the optimal operating conditions for this engine operation mode. Combustion at homogeneous, low equivalence ratio conditions results in modest temperature combustion products, containing very low concentrations of NOx and PM as well as providing high thermal efficiency. However, this combustion mode can produce higher HC and CO emissions than those of conventional engines. An electronically controlled Caterpillar single-cylinder oil test engine (SCOTE), originally designed for heavy-duty diesel applications, was converted to a HCCI direct-injection gasoline engine. The engine features an electronically controlled low-pressure common rail injector with a 60°-spray angle that is capable of multiple injections. The use of double injection was explored for emission control, and the engine was optimized using fully-automated experiments and a micro-genetic algorithm (μGA) optimization code. The variables changed during the optimization include the intake air temperature, start of injection timing, and split injection parameters (percent mass of the fuel in each injection, dwell between the pulses). The engine performance and emissions were determined at 700 rev/min with a constant fuel flow rate at 10 MPa fuel injection pressure. The results show that significant emissions reductions are possible with the use of optimal injection strategies.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3