Design of a Compact Dry Cooler With an Aluminum Heat Exchanger Core for a Supercritical CO2 Power Cycle Is Evaluated for a Concentrating Solar Power Application

Author:

Katcher Kelsi M.1,Amogne Dereje2,Patil Abhay1

Affiliation:

1. Machinery Department, Southwest Research Institute , San Antonio, TX 78238

2. Heat Exchanger Division, Vacuum Process Engineering , Sacramento, CA 95815

Abstract

Abstract As the supercritical CO2 power cycle develops and the component technologies mature, there is still a need to reduce the associated capital and operating costs to maintain a competitive levelized cost of electricity (LCOE) in order to enter the market. When considering concentrating solar power (CSP) coupled with an sCO2 power block and sensible thermal storage, the technology presents a clean source for utility-scale power generation to support baseload or peak-load electrical demand. However, the LCOE of the technology is still considered higher than the competing technologies and should be reduced to better compete in the market; 2030 targets for dispatchable solar plants are 5¢/kWh for baseload CSP and 10¢/kWh for peaker plants, as set by the United States Department of Energy. In response to this need, this study is targeting improvements in the power cycle precooler to reduce power block contribution to LCOE. This study considers a dry cooler, as CSP plants are sensitive to water consumption because many installations are slated for remote or arid locations where solar irradiance is very high, but water is scarce. Furthermore, the power block footprint for an sCO2 system is quite compact, especially as compared to a steam cycle. Therefore, there is interest in installing a more compact dry cooler that is proportional to the reduced footprint sCO2 power block, while conventional dry coolers are an order of magnitude larger. The competing goals of size, performance, and cost were considered in this study to develop a compact dry cooler that can easily be packaged with the power block, significantly reducing the installation and transport cost compared to the current state of the art, while maintaining or improving upon the heat transfer performance and impact on plant LCOE. This paper details the high-level findings of a large dry cooler sensitivity study for design point selection, design of the compact dry cooler, expected year-round performance for the dry cooler and the power cycle, and the predicted LCOE for a 30-year plant life. It was found that an aluminum heat exchanger core can be suitably designed to meet the pressure and temperature requirements for a precooler in an sCO2 recompression Brayton cycle. The dry cooler assembly was found to have improved heat transfer performance, allowing for increased cycle efficiencies and a reduced plant LCOE. When coupled with a centrifugal blower and compact transition duct, the dry cooler assembly was able to reduce the installation footprint by over 50%.

Funder

Solar Energy Technologies Program

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference18 articles.

1. 2030 Solar Cost Targets;Solar Energy Technologies Office,,2021

2. The Potential Role of Concentrating Solar Power Within the Context of DOE's 2030 Solar Cost Targets,2019

3. Defining a Compact Dry Cooler Design to Reduce LCOE Contribution in a CSP Facility,2022

4. Cycle Modeling and Optimization of an Integrally Geared sCO2 Compander,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3