Structural Health Monitoring (SHM) of Offshore Jacket Platforms

Author:

Lotfollahi-Yaghin Mohammad Ali1,Shahverdi Sajad1,Tarinejad Reza1,Asgarian Behrouz2

Affiliation:

1. University of Tabriz, Tabriz, East Azarbaijan, Iran

2. K. N. Toosi University of Technology, Tehran, Tehran, Iran

Abstract

In the present paper, Structural health monitoring has become an evolving area of research in last few decades with increasing need of online monitoring the health of large structures. The damage detection by visual inspection of the structure can prove impractical, expensive and ineffective in case of large structures like offshore platforms, multistoried buildings and bridges. Structural health monitoring is defined as the process of detecting damage in a structural system. Damage in the system causes a change in dynamic properties of a system. The structural damage is typically a local phenomenon, which tends to be captured by higher frequency signals. Most of vibration-based damage detection methods require the modal properties that are obtained from measured signals through the system identification techniques. However, the modal properties such as natural frequencies and mode shapes are not such a good sensitive indication of structural damage. Structural damage detection and damage localization of jacket platforms, based on wavelet packet transforms is presented in this paper. Dynamic signals measured from the structure by the finite element software package ANSYS are first decomposed into wavelet packet components. Component energies are then calculated and used for damage assessment. The results show that the WPT-based component energies are good candidate indices that are sensitive to structural damage. These component energies can be used for damage assessment including identifying damage occurrence and location.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3