Tidal Turbine Blades: Design and Dynamic Loads Estimation Using CFD and Blade Element Momentum Theory

Author:

Faudot Ce´line1,Dahlhaug Ole G.1

Affiliation:

1. NTNU, Trondheim, Norway

Abstract

The interest in tidal power is constantly increasing thanks to its high predictability, the huge potential of tides and the actual need for renewable energy. It explains the emergence of many tidal turbine designs, especially in Europe, often inspired from wind turbines. All of them are at a more or less early stage of development. But because of the high density of water, environmental drag forces are very large compared with wind turbines of the same capacity. Therefore the knowledge acquired by the wind industry is certainly qualitatively useful, but it has to be reconsidered to be applicable to tidal turbines. The aim of the project presented in this paper is to create a 1 MW reference tidal turbine, whose small-scaled model has been tested in the towing tank of Marintek laboratory (Trondheim, Norway). The tests focused on dynamic loads, which are an important reason of failure, and thus will help tidal turbine designers in their work by gaining valuable experience in turbine performance in various operating conditions. The chosen turbine has a horizontal axis and two blades, which have been designed using the blade element momentum theory for a diameter of 20m. This paper states the project issues and the method used to design the blades, from the hydrodynamic properties of the hydrofoils to the computational fluid dynamic analysis. The tests on the small scaled model makes it possible to validate the concept and a comparison between efficiencies obtained analytically, experimentally and with CFD computation has been performed in this paper. The maximum power coefficient experimentally obtained is 0.427, i.e. 1.4% higher than the power coefficient obtained numerically. The blade element momentum theory is then used to estimate the loads on each blade when the rotor is subjected to regular waves of many heights and periods, with the intention of ranking the parameters of importance and introducing a fatigue analysis.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3