Statistical Uncertainty Analysis in the Long-Term Distribution of Wind- and Wave-Induced Hot-Spot Stress for Fatigue Design of Jacket Wind Turbine Based on Time Domain Simulations

Author:

Dong WenBin1,Moan Torgeir1,Gao Zhen1

Affiliation:

1. Norwegian University of Science and Technology, Trondheim, Norway

Abstract

The statistical uncertainty of the long-term distribution of wind- and wave-induced hot-spot stress ranges in multi-planar tubular joints of a fixed jacket offshore wind turbine designed for a North Sea site in a water depth of 70m has been assessed in this paper. The dynamic response of the jacket support structure due to wind and wave loads is calculated using a decoupled procedure. Hot-spot stresses at failure-critical locations of each reference brace for 4 different tubular joints (DK, DKT, X-type) are derived by summation of the single stress components from axial, in-plane and out-plane action. The effects of planar and non-planar braces are also considered. A two-parameter Weibull function is used to fit the long-term statistical distribution of hot-spot stress ranges by combination of time domain simulation for representative environmental conditions (wind / sea states) in operational condition of the wind turbine. The statistical uncertainty of the Weibull distribution of hot-spot stress ranges and the two parameters defining the Weibull distribution is assessed, based on 20 simulations for each representative environmental condition. The contributions to the uncertainty from wind loads and wave loads are analyzed by considering 3 different load cases: wind loads only, wave loads only and combination of wind and wave loads. The sensitivity of the long-term distribution of hot-spot stress ranges due to their stress components is also assessed.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3