High Frequency Measurement of Temperature and Composition Spots With LITGS

Author:

De Domenico Francesca1,Shah Priyav2,Lowe Steven M.3,Fan Luming3,Ewart Paul4,Williams Benjamin A. O.2,Hochgreb Simone3

Affiliation:

1. Department of Engineering, University of Cambridge, Cambridge CB2 1TN, UK e-mail:

2. Department of Engineering, University of Oxford, Oxford OX1 2JD, UK

3. Department of Engineering, University of Cambridge, Cambridge CB2 1TN, UK

4. Department of Physics, University of Oxford, Oxford OX1 2JD, UK

Abstract

Temperature and composition spots in a turbulent flow are detected and time-resolved using laser-induced thermal grating spectroscopy (LITGS). A 355 nm wavelength particle image velocimetry laser is operated at 0.5–1 kHz to generate the thermal grating using biacetyl as an absorber in trace amounts. In an open laminar jet, a feasibility study shows that small (≃ 3%) fluctuations in the mean flow properties are well captured with LITGS. However, corrections of the mean flow properties by the presence of the trace biacetyl are necessary to properly capture the fluctuations. The actual density and temperature variation in the flow are determined using a calibration procedure validated using a laminar jet flow. Finally, traveling entropy and composition spots are directly measured at different locations along a quartz tube, obtaining good agreement with expected values. This study demonstrates that LITGS can be used as a technique to obtain instantaneous, unsteady temperature and density variations in a combustion chamber, requiring only limited optical access.

Funder

Qualcomm

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3