NUMERICAL INVESTIGATION OF THE INTERACTION OF A CIRCUMFERENTIAL GROOVE CASING TREATMENT AND NEAR-TIP MODIFICATIONS FOR A HIGHLY-LOADED LOW-SPEED ROTOR UNDER THE INFLUENCE OF DOUBLE LEAKAGE

Author:

Eckel Jannik1,Reisinger Lukas2,von Jeinsen Philipp3,Gümmer Volker4

Affiliation:

1. Technische Universität München Boltzmannstraße 15 85748 Garching Deutschland Munich, Bavaria 85748 Germany

2. Landsberger Straße 145 Munich, Bavaria 80339 Germany

3. Technische Universität München Boltzmannstraße 15 Garching DE-BY, Bayern 85748 Germany

4. Boltzmannstrasse 15 TUM - Chair of Turbomachinery and Flight Propulsion Garching, Bavaria 85748 Germany

Abstract

Abstract In [1], Eckel et al. proposed using a convex-profiled pressure side region close to the tip, known as belly, as an effective method of extending the operating range of low-speed axial compressor rotors. In the literature, circumferential grooves are another well-described technique for improving the stable working range of a compressor rotor. No research has been conducted to date to determine which modification is more effective and how they interact when used together. This paper numerically investigates the influence of circumferential casing grooves and near tip modifications on the flow field in the tip region of a highly-loaded, low-speed axial compressor rotor. The simulated rotor consists of a hybrid blade configuration with a tandem profile in the mid-span region and single blade profiles near the endwalls. The aim of the numerical analysis is to explain the interaction of the secondary flow phenomena when applying the circumferential grooves and the belly geometries. It is shown that a circumferential groove can further increase the operating range for all belly configurations when positioned axially correctly. In this respect, equalization of the near-casing deceleration in the circumferential direction leads to an extension of the stall margin with both modifications. In general, the groove and belly should be positioned where the tip leakage vortex meets the pressure side of the adjacent blade. If using only one modification, the belly appears better suited for ensuring an extension of the operating range while maintaining high efficiencies.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3