Direct Numerical Simulation of Transitional and Turbulent Flows Over Multi-Scale Surface Roughness—Part I: Methodology and Challenges

Author:

Nardini Massimiliano1,Kozul Melissa1,Jelly Thomas O.1,Sandberg Richard D.1

Affiliation:

1. University of Melbourne Department of Mechanical Engineering, , Melbourne, VIC 3010 , Australia

Abstract

Abstract High-fidelity simulation of transitional and turbulent flows over multi-scale surface roughness presents several challenges. For instance, the complex and irregular geometrical nature of surface roughness makes it impractical to employ conforming structured grids, commonly adopted in large-scale numerical simulations due to their high computational efficiency. One possible solution to overcome this problem is offered by immersed boundary methods, which allow wall boundary conditions to be enforced on grids that do not conform to the geometry of the solid boundary. To this end, a three-dimensional, second-order accurate boundary data immersion method (BDIM) is adopted. A novel mapping algorithm that can be applied to general three-dimensional surfaces is presented, together with a newly developed data-capturing methodology to extract and analyze on-surface flow quantities of interest. A rigorous procedure to compute gradient quantities such as the wall shear stress and the heat flux on complex non-conforming geometries is also introduced. The new framework is validated by performing a direct numerical simulation (DNS) of fully developed turbulent channel flow over sinusoidal egg-carton roughness in a minimal-span domain. For this canonical case, the averaged streamwise velocity profiles are compared against results from the literature obtained with a body-fitted grid. General guidelines on the BDIM resolution requirements for multi-scale roughness simulation are given. Momentum and energy balance methods are used to validate the calculation of the overall skin friction and heat transfer at the wall. The BDIM is then employed to investigate the effect of irregular homogeneous surface roughness on the performance of an LS-89 high-pressure turbine blade at engine-relevant conditions using DNS. This is the first application of the BDIM to realize multi-scale roughness for transitional flow in transonic conditions in the context of high-pressure turbines. The methodology adopted to generate the desired roughness distribution and to apply it to the reference blade geometry is introduced. The results are compared to the case of an equivalent smooth blade.

Funder

Australian Research Council

Office of Science

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3